Kenneth Hughes

 » Home
 » Publications
 » Photos
 » Presentations
 » CV
 » Research
 » Blog
 » Data

Current Research

Large-scale volume and freshwater fluxes through the Canadian Arctic Archipelago are driven by differences in density and atmospheric pressure. These fluxes, however, are modulated by smaller-scale (metre to kilometre) phenomena such as internal waves, topographically induced eddies, and hydraulic jumps. Such small-scale processes are the focus of my PhD research. They are not resolved by large-scale circulation models or mesoscale surveys. I therefore undertake process-oriented studies to understand and quantify the cumulative effect of these unresolved motions. Techniques include numerical modelling of the flows, analysis of shipboard data, and interpretation in terms of channel-flow theories.

Many of the phenomena that play key roles in the Archipelago

The Archipelago has complex but fascinating oceanography. To start, it is a meeting ground for waters from the Pacific, Arctic, and Atlantic Oceans. These waters flow through the many channels demarcated by a hundred major islands. While doing so, they encounter rough topography, strong tidal currents, and variable sea ice.

Past Research

Sea ice in regions near an ice shelf may be thicker than otherwise expected due to supercooled water. Waters tens of millikelvin cooler than the freezing point are commonly observed flowing northward from beneath the Ross/McMurdo Ice Shelves. Within the supercooled plume are small frazil ice crystals. My MSc research considered the fate of these crystals: their growth rate while suspended, the distance they travelled before precipitating, the drag they induce after they consolidate, and their effect on interactions at the base of sea ice.

Supercooled water is produced as comparatively fresh water rises up beneath an ice shelf

In related projects, I have