High-spatial-resolution oceanography of the central Canadian Arctic Archipelago

Ken Hughes,¹ Jody Klymak,¹ Bill Williams,² Humfrey Melling²

¹University of Victoria ²Institute of Ocean Sciences

Rationale

Past observation:

Method

The MVP

Survey summary

Results

Meeting grour

Transitions

Conclusions

Large-scale flow estimates disagree

Freshwater flux through the Archipelago from 10 models

Jahn et al. (2012)

Rationale

Past observations

Method

The MVP

Survey summa

Results

Meeting grou

Transitions

Conclusions

Past observations indicate strong mixing

de Lange Boom et al. (1987)

Rationale

Past observations

Method

The MVP

Survey summary

Results

Transitions

Dissipation

Conclusions

Ice conditions indicate strong mixing

May 3

Rationale

Past observations

- Method
- The MVP
- Survey summary
- Results Meeting gro
- Transitions
- Conclusions

Ice conditions indicate strong mixing

June 3

Rationale

Past observations

- Method
- The MVP
- Survey summary
- Results Meeting gro
- Transitions
- Conclusions

Ice conditions indicate strong mixing

June 3

Rationale

Past observations

Method

The MVP

Survey summary

Results

Meeting grour

Transitions

Conclusions

The MVP: moving vessel profiler

Rationale

Past observations

Method

The MVP

Survey summary

- Results Meeting group Transitions
- Conclusions

Survey summary

Results Meeting ground

A meeting ground for water masses

Rationale

Past observations

Method

The MVP

Survey summa

Results Meeting ground Transitions

A meeting ground for water masses

Rationale

Past observations

Method

THE MVP

Results Meeting grou Transitions

Conclusions

An abrupt transition in properties

Rationale

Past observation

Method

The MVP

Results

Meeting groun Transitions

Conclusions

An abrupt transition in properties

Estimating dissipation

Results Dissipation

Rationale

Past observations

Method

The MVP

Survey summary

Results

Meeting grou

Dissipation

Conclusions

Rationale

Past

Method

The MVP

Survey summary

Results

Meeting groun

Transitions

Dissipation

Conclusions

High dissipation rates near sills

Rationale

Past

- Method
- The MVP
- Survey summary

Results

- Meeting grour Transitions
- Dissipation
- Conclusions

High dissipation rates near sills

Mixing rates in context

Mixing rates in context

Why such large dissipation and mixing?

Rationale

Past observations

Method

Survey summ

Results Meeting grour Transitions Dissipation

Conclusions

Why such large dissipation and mixing?

Rationale

Past observations

Method

The MVP

Results

Meeting ground Transitions Dissipation

Conclusions

Why such large dissipation and mixing?

Conclusions

Rationale

Past observations

Method

The MVP

Survey summary

Results

Meeting group

Conclusions

• Water masses meet in the Archipelago

- Bathymetry inhibits direct communication ...
- But also enhances mixing

Conclusions

Rationale

Past observations

Method

The MVP

Survey summary

Results Meeting grow

Conclusions

• Water masses meet in the Archipelago

• Bathymetry inhibits direct communication ...

• But also enhances mixing

Conclusions

Rationale

Past observations

Method

The MVP

Survey summary

Results Meeting grou Transitions

Conclusions

• Water masses meet in the Archipelago

• Bathymetry inhibits direct communication ...

• But also enhances mixing